martes, 7 de junio de 2011

ADMINISTRACION DE RECURSOS DE UNA RED

Temario

Modulo 5 : Instalación de redes de área local

Modulo 2 : Administrar los recursos de una red

Resultados de aprendizaje oérar una red de área local utilizando las herramientas administrativas del sistema operativo de red.

Contenidos:

1. Determinar la funcionalidad del software de red respecto a los recursos disponibles

1.1 Identificar la capacidad del servidor

1.2 Verificar las características de los equipos de computo y perifericos que conformaron la red

2. Instalar el sistema operativo de red

2.1 Identificar el equipo de computo determinando marcar versión , modelo, características y configuración del sistema operativo a emplear

2.2 Verificar la conectividad de la red

2.3 Realizar el proceso de carga el sistema operativo de redes en el servidor

3. Administrar

3.1 Identificar los recursos de una red

3.2 Identificar los recursos de la red

3.3 Generar cuentas y grupos de usuarios

3.4 Asignar derechos y atributos a usuarios y grupos

3.5 Compartir recursos de una red

3.6 Monitores la red

3.7 Aplicar mantenimiento a la red

3.8 Generación de reportes


Contesta lo siguiente:

Computadora: es una máquina electrónica que recibe y procesa datos para convertirlos en información útil. Una computadora es una colección de circuitos integrados y otros componentes relacionados que puede ejecutar con exactitud, rapidez y de acuerdo a lo indicado por un usuario o automáticamente por otro programa, una gran variedad de secuencias o rutinas de instrucciones que son ordenadas, organizadas y sistematizadas en función a una amplia gama de aplicaciones prácticas y precisamente determinadas, proceso al cual se le ha denominado con el nombre de programación y al que lo realiza se le llama programador.

Periféricos: denomina periféricos a los aparatos o dispositivos auxiliares e independientes conectados a la unidad central de procesamiento de una computadora

Periferico de entrada:Un dispositivo de entrada o periférico de entrada es cualquier periférico (pieza del equipamiento del hardware de computadora) utilizado para proporcionar datos y señales de control a un sistema de procesamiento de información (por ejemplo, un equipo). Los periféricos de entrada y salida componen la interfaz de hardware entre un equipo como un escáner o controlador 6DOF.

Red:es un conjunto de equipos informáticos conectados entre sí por medio de dispositivos físicos que envían y reciben impulsos eléctricos, ondas electromagnéticas o cualquier otro medio para el transporte de datos para compartir información y recursos. Este término también engloba aquellos medios técnicos que permiten compartir la información.

Servidor: Un servidor web es un programa que está diseñado para transferir hipertextos, páginas web o páginas HTML (HyperText Markup Language): textos complejos con enlaces, figuras, formularios, botones y objetos incrustados como animaciones o reproductores de música.
Sistema operativo: Un Sistema Operativo (SO) es el software básico de una computadora que provee una interfaz entre el resto de programas del ordenador, los dispositivos hardware y el usuario.


COSTO DE TARJETA DE RED
Tarjeta de red inalámbrica                          $129. °°
PCL Encore 54 mbps

Tarjeta interna d red
Potente Interna PCL inalámbrica                 $145. °°
Wifi para Pc

Tarjeta de Red LAN                                     $ 62. °°
Encore PCL
Cable UTP
Cable utp CatSe Para
Red de datos                                              $4.50

Bobin de cable 209 mts                              $750. °°
Utp cat Se 8 Litilos Marca
Viakom
CONECTORES RJ45
Conector RJ45 plug bolsa de 100 pzas………………………………… $145.00

100 Plus conectores RJ45 para cables de red…………………….. $100.00

Conector RJ45………………………………………………………………………..   $5.00
CONCENTRADOR
Concentrador 3cum 3c 16704…………………………………………………………………$179.00
Concentrador switch 3 con 8 puertos……………………………………………………..$300.00
Concentrador Switch Dell powerconnect 2324 24 puertos…………………….$750.00




CUESTIONARIO
¿Qué comprendes de la red?
Mezclas de diversas señales, interconexión de varios tipos de red, uso de múltiples medios de comunicación de diversos protocolos

¿Cuáles son los tipos de interconexión?
LAN, MAN , WAN

¿Menciona algunos protocolos de comunicación?
TCP/IP, SPX/IPR, SNA, OSI

¿Cuale es l finalidad de tener una red más segura?
Protegerlo

¿Qué significa WAN?
Red de área amplia

¿Qué significa Lan?
Red de área local

¿Qué significa MAN?
Red de área metropolitana

LAN, Red de área local
Una red de área local, red local o LAN (del inglés local area network) es la interconexión de varias computadoras y periféricos. Su extensión está limitada físicamente a un edificio o a un entorno de 200 metros, con repetidores podría llegar a la distancia de un campo de 1 kilómetro. Su aplicación más extendida es la interconexión de computadoras personales y estaciones de trabajo en oficinas, fábricas, etc.

Evolución

Las primeras redes fueron de tiempo compartido, las mismas que utilizaban mainframes y terminales conectadas.
Dichos entornos se implementaban con la SNA (Arquitectura de Sistemas de Redes) de IBM (international business machines) y la arquitectura de red Digital.
Las LANs (Redes de Área Local) surgieron a partir de la revolución de el PC. Las LANs permitieron que usuarios ubicados en un área geográfica relativamente pequeña pudieran intercambiar mensajes y archivos, y tener acceso a recursos compartidos de toda la Red, tales como Servidores de Archivos o de aplicaciones.
Con la aparición de Netware surgió una nueva solución, la cual ofrecía: soporte imparcial para los más de cuarenta tipos existentes de tarjetas, cables y sistemas operativos mucho más sofisticados que los que ofrecían la mayoría de los competidores. Netware dominaba el campo de las Lan de los ordenadores personales desde antes de su introducción en 1983 hasta mediados de los años 1990, cuando Microsoft introdujo Windows NT Advance Server y Windows for Workgroups.
De todos los competidores de Netware, sólo Banyan VINES tenía poder técnico comparable, pero Banyan ganó una base segura. Microsoft y 3Com trabajaron juntos para crear un sistema operativo de red simple el cual estaba formado por la base de 3Com's 3+Share, el Gestor de redes Lan de Microsoft y el Servidor del IBM. Ninguno de estos proyectos fue muy satisfactorio.

Ventajas

En una empresa suelen existir muchos ordenadores, los cuales necesitan de su propia impresora para imprimir informes (redundancia de hardware), los datos almacenados en uno de los equipos es muy probable que sean necesarios en otro de los equipos de la empresa, por lo que será necesario copiarlos en este, pudiéndose producir desfases entre los datos de dos usuarios, la ocupación de los recursos de almacenamiento en disco se multiplican (redundancia de datos), los ordenadores que trabajen con los mismos datos deberán de tener los mismos programas para manejar dichos datos (redundancia de software), etc.
La solución a estos problemas se llama red de área local, esta permite compartir bases de datos (se elimina la redundancia de datos), programas (se elimina la redundancia de software) y periféricos como puede ser un módem, una tarjeta RDSI, una impresora, etc. (se elimina la redundancia de hardware); poniendo a nuestra disposición otros medios de comunicación como pueden ser el correo electrónico y el Chat. Nos permite realizar un proceso distribuido, es decir, las tareas se pueden repartir en distintos nodos y nos permite la integración de los procesos y datos de cada uno de los usuarios en un sistema de trabajo corporativo. Tener la posibilidad de centralizar información o procedimientos facilita la administración y la gestión de los equipos.
Además una red de área local conlleva un importante ahorro, tanto de tiempo, ya que se logra gestión de la información y del trabajo, como de dinero, ya que no es preciso comprar muchos periféricos, se consume menos papel, y en una conexión a Internet se puede utilizar una única conexión telefónica o de banda ancha compartida por varios ordenadores conectados en red.




Características importantes


  • Tecnología broadcast (difusión) con el medio de transmisión compartido.
  • Capacidad de transmisión comprendida entre 1 Mbps y 1 Gbps.
  • Extensión máxima no superior a 3 km (una FDDI puede llegar a 200 km).
  • Uso de un medio de comunicación privado.
  • La simplicidad del medio de transmisión que utiliza (cable coaxial, cables telefónicos y fibra óptica).
  • La facilidad con que se pueden efectuar cambios en el hardware y el software.
  • Gran variedad y número de dispositivos conectados.
  • Posibilidad de conexión con otras redes.
  • Limitante de 100 m, puede llegar a mas si se usan repetidores.







TABLA COMPARATIVA DE COMPUTADORAS
Computadoras
Características y Especificaciones técnicas
Precio
HP Pavillion Phenom Triple Core x3 ( 3 nucleos)
  • Solución integral de impresión de pago por uso.
  • Impresoras HP LaserJet (color y blanco y negro).
  • Productos multifunción LaserJet.
  • Incluye accesorios ordenados con la impresora.
  • Incluye mantenimiento preventivo (kits de mantenimiento).
  • Instalación y el soporte HP que prefieras. Cuatro horas o al día siguiente en tu domicilio.
  • Recibes un contrato y una factura mensual.
  • Seleccionas una duración de dos o tres años.
  • Reporte anual de uso.
  • Centro de atención al cliente prioritario.
  • Servicio de entrega de consumibles.
  • Trámite rápido y sencillo para la solicitud.

$ 6980. °°
Dell
Dell ocupa el lugar de tercer finalista en el Premio Digital 01 al Mejor Equipo Informático de 2008.
El XPS tiene un diseño elegante, moderno, y atractivo. Es casi un ultraligero: pesa entre 1,8 y 2 Kg, teniendo en cuenta que posee una pantalla de 13,3” y mide entre 2 y 3 centímetros de grosor cuando está cerrado, es asombroso. Está enmarcado por una elegante carcasa personalizable en color rojo o negro profundo. Nos da la posibilidad de equiparlo con una pantalla ultrabrillante gracias a la iluminación LED trasera.

$ 6000. °°
Thoshiba
Toshiba L645-SP4138L, una notebook muy completa de Toshiba para el mercado de gama media-alta
$ 7999. °°
Hacer
Toshiba L645-SP4138L, una notebook muy completa de Toshiba para el mercado de gama media-alta
 $6500. °°
Compaq
  • Procesador: Pentium T4500 2.3 GHZ
  • Disco Rígido: 320 GB
  • Memoria RAM: 2 GB
  • Windows 7 Starter
  • Batería: 6 Celdas
  • Unidad CD / DVD
  • Pantalla: 15.6″
  • Puertos USB: 3

$ 6700. °°



ADMINISTRACION DE UNA RED

Administración de red: La administración de redes abarca un amplio número de asuntos. En general, se suelen tratar con muchos datos estadísticos e información sobre el estado de distintas partes de la red, y se realizan las acciones necesarias para ocuparse de fallos y otros cambios. La técnica más primitiva para la monitorización de una red es hacer "pinging" a los hosts críticos; el "pinging" se basa en un datagrama de "echo" (eco), que es un tipo de datagrama que produce una réplica inmediata cuando llega al destino. La mayoría de las implementaciones TCP/IP incluyen un programa (generalmente, llamado "ping") que envía un echo a un host en concreto. Si recibimos réplica, sabremos que host se encuentra activo, y que la red que los conecta funciona; en caso contrario, sabremos que hay algún error. Mediante "pinging" a un razonable número de ciertos hosts, podremos normalmente conocer qué ocurre en la red. Si los ping a todos los hosts de una red no dan respuesta, es lógico concluir que la conexión a dicha red, o la propia red, no funciona. Si sólo uno de los hosts no da respuesta, pero los demás de la misma red responden, es razonable concluir que dicho host no funciona.

Métodos de acceso
La función de los métodos de acceso
Se denomina método de acceso al conjunto de reglas que definen la forma en que un equipo coloca los datos en la red y toma los datos del cable. Una vez que los datos se están moviendo en la red, los métodos de acceso ayudan a regular el flujo del tráfico de la red.
Control del tráfico en el cable
Una red es de alguna forma como la vía de un tren, por la que circulan varios trenes. Además de la vía, suele haber estaciones de tren. Cuando un tren está en la vía, el resto de los trenes deben respetar un procedimiento que gobierna cómo y cuándo entran en el flujo de tráfico. Sin dicho procedimiento, la entrada de un tren podría colisionar con otro que ya estuviese en la vía.
Sin embargo, hay diferencias importantes entre un sistema de vías de tren y una red de equipos. En una red, parece que todo el tráfico se mueve simultáneamente, sin interrupción. No obstante, esta apariencia es una ilusión; en realidad, los equipos toman turnos para acceder a la red durante breves períodos de tiempo. La mayor diferencia está en la mayor velocidad en la que se mueve el tráfico de la red.
Varios equipos pueden compartir el acceso al cable. Sin embargo, si dos equipos tratasen de colocar datos en el cable a la vez, los paquetes de datos de un equipo podrían colisionar con los paquetes de datos del otro equipo, y ambos conjuntos de paquetes de datos podrían dañarse.
Si un usuario va a enviar los datos a otro usuario a través de la red, o se va a acceder a los datos de un servidor, tiene que haber una forma para que los datos puedan acceder al cable sin interferirse entre ellos. Y el equipo de destino debe tener una garantía para que los datos no se destruyan en una colisión durante la transmisión.
Los métodos de acceso tienen que ser consistentes en la forma de manipular los datos. Si los equipos utilizasen métodos de acceso distintos, la red podría tener problemas, debido a que unos métodos podrían dominar el cable.
Los métodos de acceso previenen que los equipos accedan simultáneamente al cable. Al asegurar que sólo un equipo coloca los datos en el cable de la red, los métodos de acceso aseguran que el envío y recepción de datos de la red se realiza de forma ordenada.





Tipos de Redes


¿Cómo se clasifican las redes?

Las redes de computadoras se clasifican por su tamaño, es decir la extensión física en que se ubican sus componentes, desde un aula hasta una ciudad, un país o incluso el planeta.
Dicha clasificación determinará los medios físicos y protocolos requeridos para su operación, por ello se han definido tres tipos:

Redes de Area Amplia o WAN (Wide Area Network):
Esta cubre áreas de trabajo dispersas en un país o varios países o  continentes. Para lograr esto se necesitan distintos tipos de medios: satélites, cables interoceánicos, radio, etc.. Así como la infraestructura telefónica de larga distancias existen en ciudades y países, tanto de carácter público como privado.

Redes de Area Metropolitana o MAN (MetropolitanArea Network):
Tiene cubrimiento en ciudades enteras o partes de las mismas. Su uso se encuentra concentrado en entidades de servicios públicos como bancos.

Redes de Area Local o LAN (Local Area Network):
Permiten la interconexión desde unas pocas hasta miles de computadoras en la misma área de trabajo como por ejemplo un edificio. Son las redes más pequeñas que abarcan de unos pocos metros a unos pocos kilómetros.

¿Cómo es el funcionamiento de una red de área local?
Este es un conjunto de computadoras ubicadas en un  edificio o lugar cercano, además consta de servidores, estaciones de trabajo, cables y tarjetas de red,  también de programas de computación instalados en los equipos inteligentes.
Esta red permite la comunicación de las estaciones de trabajo entre sí y el Servidor (y los recursos asociados a él); para dicho fin se utiliza un sistema operativo de red que se encarga de la administración de los recursos como así también la seguridad y control de acceso al sistema interactuando con el sistema operacional de las estaciones de trabajo. 






TOPOLOGIAS DE RED

La topología de red se define como la cadena de comunicación usada por los nodos que conforman una red para comunicarse. Un ejemplo claro de esto es la topología de árbol, la cual es llamada así por su apariencia estética, por la cual puede comenzar con la inserción del servicio de internet desde el proveedor, pasando por el router, luego por un switch y este deriva a otro switch u otro router o sencillamente a los hosts (estaciones de trabajo), el resultado de esto es una red con apariencia de árbol porque desde el primer router que se tiene se ramifica la distribución de internet dando lugar a la creación de nuevas redes o subredes tanto internas como externas. Además de la topología estética, se puede dar una topología lógica a la red y eso dependerá de lo que se necesite en el momento.
En algunos casos se puede usar la palabra arquitectura en un sentido relajado para hablar a la vez de la disposición física del cableado y de cómo el protocolo considera dicho cableado. Así, en un anillo con una MAU podemos decir que tenemos una topología en anillo, o de que se trata de un anillo con topología en estrella.
La topología de red la determina únicamente la configuración de las conexiones entre nodos. La distancia entre los nodos, las interconexiones físicas, las tasas de transmisión y los tipos de señales no pertenecen a la topología de la red, aunque pueden verse afectados por la misma.

RED DE ANILLO

Topología de red en la que cada estación está conectada a la siguiente y la última está conectada a la primera. Cada estación tiene un receptor y un transmisor que hace la función de repetidor, pasando la señal a la siguiente estación.
En este tipo de red la comunicación se da por el paso de un token o testigo, que se puede conceptualizar como un cartero que pasa recogiendo y entregando paquetes de información, de esta manera se evitan eventuales pérdidas de información debidas a colisiones.

En un anillo doble, dos anillos permiten que los datos se envíen en ambas direcciones. Esta configuración crea redundancia (tolerancia a fallos).



RED DE BUS

Red cuya topología se caracteriza por tener un único canal de comunicaciones (denominado bus, troncal o backbone) al cual se conectan los diferentes dispositivos. De esta forma todos los dispositivos comparten el mismo canal para comunicarse entre sí.

Construccion

Los extremos del cable se terminan con una resistencia de acople denominada terminador, que además de indicar que no existen más ordenadores en el extremo, permiten cerrar el bus por medio de un acople de impedancias.
Es la tercera de las topologías principales. Las estaciones están conectadas por un único segmento de cable. A diferencia de una red en anillo, el bus es pasivo, no se produce generación de señales en cada nodo o router.

  Ventajas

  • Facilidad de implementación y crecimiento.
  • Simplicidad en la arquitectura.

  Desventajas

  • Hay un límite de equipos dependiendo de la calidad de la señal.
  • Puede producirse degradación de la señal.
  • Complejidad de reconfiguración y aislamiento de fallos.
  • Limitación de las longitudes físicas del canal.
  • Un problema en el canal usualmente degrada toda la red.
  • El desempeño se disminuye a medida que la red crece.
  • El canal requiere ser correctamente cerrado (caminos cerrados).
  • Altas pérdidas en la transmisión debido a colisiones entre mensajes.
  • Es una red que ocupa mucho espacio.



Red en estrella


Una red en estrella es una red en la cual las estaciones están conectadas directamente a un punto central y todas las comunicaciones se han de hacer necesariamente a través de éste. Los dispositivos no están directamente conectados entre sí, además de que no se permite tanto tráfico de información.
Dado su transmisión, una red en estrella activa tiene un nodo central activo que normalmente tiene los medios para prevenir problemas relacionados con el eco.
Se utiliza sobre todo para redes locales. La mayoría de las redes de área local que tienen un enrutador (router), un conmutador (switch) o un concentrador (hub) siguen esta topología. El nodo central en estas sería el enrutador, el conmutador o el concentrador, por el que pasan todos los paquetes.




Ventajas

  • Si una PC se desconecta o se rompe el cable solo queda fuera de la red esa PC.
  • Fácil de agregar, reconfigurar arquitectura PC.
  • Fácil de prevenir daños o conflictos.
  • Centralización de la red

Desventajas

  • Si el nodo central falla, toda la red deja de transmitir.
  • Es costosa, ya que requiere más cable que las topologías bus o anillo.
  • El cable viaja por separado del hub a cada computadora

Red en árbol

Topología de red en la que los nodos están colocados en forma de árbol. Desde una visión topológica, la conexión en árbol es parecida a una serie de redes en estrella interconectadas salvo en que no tiene un nodo central. En cambio, tiene un nodo de enlace troncal, generalmente ocupado por un hub o switch, desde el que se ramifican los demás nodos. Es una variación de la red en bus, la falla de un nodo no implica interrupción en las comunicaciones. Se comparte el mismo canal de comunicaciones.
La topología en árbol puede verse como una combinación de varias topologías en estrella. Tanto la de árbol como la de estrella son similares a la de bus cuando el nodo de interconexión trabaja en modo difusión, pues la información se propaga hacia todas las estaciones, solo que en esta topología las ramificaciones se extienden a partir de un punto raíz (estrella), a tantas ramificaciones como sean posibles, según las características del árbol.
Los problemas asociados a las topologías anteriores radican en que los datos son recibidos por todas las estaciones sin importar para quien vayan dirigidos. Es entonces necesario dotar a la red de un mecanismo que permita identificar al destinatario de los mensajes, para que estos puedan recogerlos a su arribo. Además, debido a la presencia de un medio de transmisión compartido entre muchas estaciones, pueden producirse interferencia entre las señales cuando dos o más estaciones transmiten al mismo tiempo.

Ventajas de Topología de Árbol

  • El Hub central al retransmitir las señales amplifica la potencia e incrementa la distancia a la que puede viajar la señal.
  • Se permite conectar más dispositivos gracias a la inclusión de concentradores secundarios.
  • Permite priorizar y aislar las comunicaciones de distintas computadoras.
  • Cableado punto a punto para segmentos individuales.
  • Soportado por multitud de vendedores de software y de hardware.

Desventajas de Topología de Árbol

  • Se requiere mucho cable.
  • La medida de cada segmento viene determinada por el tipo de cable utilizado.
  • Si se viene abajo el segmento principal todo el segmento se viene abajo con él.
  • Es más difícil su configuración.
  • No tiene sentido único



 PROTOCOLOS DE RED

CAPA 1 NIVEL FISICO

El nivel físico o capa física se refiere a las transformaciones que se hacen a la secuencia de bits para trasmitirlos de un lugar a otro. Generalmente los bits se manejan dentro del PC como niveles eléctricos. Por ejemplo, puede decirse que en un punto o cable existe un 1 cuando está a n cantidad de volts y un cero cuando su nivel es de 0 volts. Cuando se trasmiten los bits casi siempre se transforman en otro tipo de señales de tal manera que en el punto receptor puede recuperarse la secuencia de bits originales. Esas transformaciones corresponden a los físicos e ingenieros. Para las distancias cortas dentro de la PC los bits no requieren transformaciones y esta capa no existe.

CAPA 2 NIVEL DE ENLACE DE DATOS

El nivel de enlace de datos (en inglés data link level) o capa de enlace de datos es la segunda capa del modelo OSI, el cual es responsable de la transferencia fiable de información a través de un circuito de transmisión de datos. Recibe peticiones de la capa de red y utiliza los servicios de la capa física.
El objetivo de la capa de enlace es conseguir que la información fluya, libre de errores, entre dos máquinas que estén conectadas directamente (servicio orientado a conexión).
Para lograr este objetivo tiene que montar bloques de información (llamados tramas en esta capa), dotarles de una dirección de capa de enlace, gestionar la detección o corrección de errores, y ocuparse del control de flujo entre equipos (para evitar que un equipo más rápido desborde a uno más lento).
Cuando el medio de comunicación está compartido entre más de dos equipos es necesario arbitrar el uso del mismo. Esta tarea se realiza en la subcapa de control de acceso al medio.
Dentro del grupo de normas IEEE 802, la subcapa de enlace lógico se recoge en la norma IEEE 802.2 y es común para todos los demás tipos de redes (Ethernet o IEEE 802.3, IEEE 802.11 o Wi-Fi, IEEE 802.16 o WiMAX, etc.); todas ellas especifican un subcapa de acceso al medio así como una capa física distinta.
Otro tipo de protocolos de la capa de enlace serían PPP (Point to point protocol o protocolo punto a punto), HDLC (High level data link control o protocolo de enlace de alto nivel), por citar dos.
En la práctica la subcapa de acceso al medio suele formar parte de la propia tarjeta de comunicaciones, mientras que el subcapa de enlace lógico estaría en el programa adaptador de la tarjeta (driver en inglés).

CAPA 3 NIVEL DE RED

El nivel de red o capa de red, según la normalización OSI, es un nivel o capa que proporciona conectividad y selección de ruta entre dos sistemas de hosts que pueden estar ubicados en redes geográficamente distintas. Es el tercer nivel del modelo OSI y su misión es conseguir que los datos lleguen desde el origen al destino aunque no tengan conexión directa. Ofrece servicios al nivel superior (nivel de transporte) y se apoya en el nivel de enlace, es decir, utiliza sus funciones.
Para la consecución de su tarea, puede asignar direcciones de red únicas, interconectar subredes distintas, encaminar paquetes, utilizar un control de congestión y control de errores.

CAPA 4 NIVEL DE TRANSPORTE

El nivel de transporte.... o capa transporte es el cuarto nivel del modelo OSI encargado de la transferencia libre de errores de los datos entre el emisor y el receptor, aunque no estén directamente conectados, así como de mantener el flujo de la red. Es la base de toda la jerarquía de protocolo. La tarea de esta capa es proporcionar un transporte de datos confiable y económico de la máquina de origen a la máquina destino, independientemente de la red de redes física en uno. Sin la capa transporte, el concepto total de los protocolos en capas tendría poco sentido.

CAPA 5 NIVEL DE SESION

El nivel de sesión o capa de sesión es el quinto nivel del modelo OSI , que proporciona los mecanismos para controlar el diálogo entre las aplicaciones de los sistemas finales. En muchos casos, los servicios de la capa de sesión son parcialmente, o incluso, totalmente prescindibles. No obstante en algunas aplicaciones su utilización es ineludible.
La capa de sesión proporciona los siguientes servicios:
  • Control del Diálogo: Éste puede ser simultáneo en los dos sentidos (full-duplex) o alternado en ambos sentidos (half-duplex).
  • Agrupamiento: El flujo de datos se puede marcar para definir grupos de datos.
  • Recuperación: La capa de sesión puede proporcionar un procedimiento de puntos de comprobación, de forma que si ocurre algún tipo de fallo entre puntos de comprobación, la entidad de sesión puede retransmitir todos los datos desde el último punto de comprobación y no desde el principio.
Todas estas capacidades se podrían incorporar en las aplicaciones de la capa 7. Sin embargo ya que todas estas herramientas para el control del diálogo son ampliamente aplicables, parece lógico organizarlas en una capa separada, denominada capa de sesión.
La capa de sesión surge como una necesidad de organizar y sincronizar el diálogo y controlar el intercambio de datos.
La capa de sesión permite a los usuarios de máquinas diferentes establecer sesiones entre ellos. Una sesión permite el transporte ordinario de datos, como lo hace la capa de transporte, pero también proporciona servicios mejorados que son útiles en algunas aplicaciones. Se podría usar una sesión para que el usuario se conecte a un sistema remoto de tiempo compartido o para transferir un archivo entre dos máquinas.

CAPA 6 NIVEL DE PRESENTACION

El nivel de presentación o capa de presentación es el sexto nivel del Modelo OSI que se encarga de la representación de la información, de manera que aunque distintos equipos puedan tener diferentes representaciones internas de caracteres (ASCII, Unicode, EBCDIC), números (little-endian tipo Intel, big-endian tipo Motorola), sonido o imágenes, los datos lleguen de manera reconocible.
Esta capa es la primera en trabajar más el contenido de la comunicación que cómo se establece la misma. En ella se tratan aspectos tales como la semántica y la sintaxis de los datos transmitidos, ya que distintas computadoras pueden tener diferentes formas de manejarlas.
Por lo tanto, podemos resumir definiendo a esta capa como la encargada de manejar las estructuras de datos abstractas y realizar las conversiones de representación de datos necesarias para la correcta interpretación de los mismos.
Esta capa también permite cifrar los datos y comprimirlos. Actúa como traductor.
La Capa 6, o capa de presentación, cumple tres funciones principales. Estas funciones son las siguientes:
  • Formateo de datos
  • Cifrado de datos
  • Compresión de datos
Para comprender cómo funciona el formateo de datos, tenemos dos sistemas diferentes. El primer sistema utiliza el Código ampliado de caracteres decimal codificados en binario (EBCDIC) para representar los caracteres en la pantalla. El segundo sistema utiliza el Código americano normalizado para el intercambio de la información (ASCII) para la misma función. La Capa 6 opera como traductor entre estos dos tipos diferentes de códigos.
El cifrado de los datos protege la información durante la transmisión. Las transacciones financieras utilizan el cifrado para proteger la información confidencial que se envía a través de Internet. Se utiliza una clave de cifrado para cifrar los datos en el lugar origen y luego descifrarlos en el lugar destino.
La compresión funciona mediante el uso de algoritmos para reducir el tamaño de los archivos. El algoritmo busca patrones de bits repetidos en el archivo y entonces los reemplaza con un token. Un token es un patrón de bit mucho más corto que representa el patrón largo. Una analogía sencilla puede ser el nombre Rafa (el apodo), el token, para referirse a alguien cuyo nombre completo sea Rafael.

CAPA 7 DE APLICACION

El nivel de aplicación o capa de aplicación es el séptimo nivel del modelo OSI.
Ofrece a las aplicaciones (de usuario o no) la posibilidad de acceder a los servicios de las demás capas y define los protocolos que utilizan las aplicaciones para intercambiar datos, como correo electrónico (POP y SMTP), gestores de bases de datos y protocolos de transferencia de archivos (FTP)
Cabe aclarar que el usuario normalmente no interactúa directamente con el nivel de aplicación. Suele interactuar con programas que a su vez interactúan con el nivel de aplicación pero ocultando la complejidad subyacente. Así por ejemplo un usuario no manda una petición "HTTP/1.0 GET index.html" para conseguir una página en html, ni lee directamente el código html/xml. O cuando chateamos con el Messenger, no es necesario que codifiquemos la información y los datos del destinatario para entregarla a la capa de Presentación (capa 6) para que realice el envío del paquete.
En esta capa aparecen diferentes protocolos:
  • FTP (File Transfer Protocol - Protocolo de transferencia de archivos) para transferencia de archivos.
  • DNS (Domain Name Service - Servicio de nombres de dominio).
  • DHCP (Dynamic Host Configuration Protocol - Protocolo de configuración dinámica de anfitrión).
  • HTTP (HyperText Transfer Protocol) para acceso a páginas web.
  • NAT (Network Address Translation - Traducción de dirección de red).
  • POP (Post Office Protocol) para correo electrónico.
  • SMTP (Simple Mail Transport Protocol).
  • SSH (Secure SHell)
  • TELNET para acceder a equipos remotos.
  • TFTP (Trival File Transfer Protocol).
Esta capa contiene las aplicaciones visibles para el usuario. Algunas consideraciones son: seguridad y cifrado, DNS (Domain Name Service) Una de las aplicaciones mas usadas hoy en dia en Internet es el WWW (World Wide Web).

Modelo OSI

El modelo de interconexión de sistemas abiertos, también llamado OSI (en inglés open system interconnection) es el modelo de red descriptivo creado por la Organización Internacional para la Estandarización en el año 1984. Es decir, es un marco de referencia para la definición de arquitecturas de interconexión de sistemas de comunicaciones.
Historia
A principios de 1980 el desarrollo de redes surgió con desorden en muchos sentidos. Se produjo un enorme crecimiento en la cantidad y tamaño de las redes. A medida que las empresas tomaron conciencia de las ventajas de usar tecnologías de conexión, las redes se agregaban o expandían a casi la misma velocidad a la que se introducían las nuevas tecnologías de red.
Para mediados de 1980, estas empresas comenzaron a sufrir las consecuencias de la rápida expansión. De la misma forma en que las personas que no hablan un mismo idioma tienen dificultades para comunicarse, las redes que utilizaban diferentes especificaciones e implementaciones tenían dificultades para intercambiar información. El mismo problema surgía con las empresas que desarrollaban tecnologías de conexiones privadas o propietarias. "Propietario" significa que una sola empresa o un pequeño grupo de empresas controlan todo uso de la tecnología. Las tecnologías de conexión que respetaban reglas propietarias en forma estricta no podían comunicarse con tecnologías que usaban reglas propietarias diferentes.
Para enfrentar el problema de incompatibilidad de redes, la Organización Internacional para la Estandarización (ISO) investigó modelos de conexión como la red de Digital Equipment Corporation (DECnet), la Arquitectura de Sistemas de Red (Systems Network Architecture) y TCP/IP a fin de encontrar un conjunto de reglas aplicables de forma general a todas las redes. Con base en esta investigación, la ISO desarrolló un modelo de red que ayuda a los fabricantes a crear redes que sean compatibles con otras redes.

Modelo de referencia OSI

Siguiendo el esquema de este modelo se crearon numerosos protocolos. El advenimiento de protocolos más flexibles donde las capas no están tan demarcadas y la correspondencia con los niveles no era tan clara puso a este esquema en un segundo plano. Sin embargo es muy usado en la enseñanza como una manera de mostrar cómo puede estructurarse una "pila" de protocolos de comunicaciones.
El modelo especifica el protocolo que debe ser usado en cada capa, y suele hablarse de modelo de referencia ya que es usado como una gran herramienta para la enseñanza de comunicación de redes. Este modelo está dividido en siete capas:

Capa física

Es la que se encarga de las conexiones físicas de la computadora hacia la red, tanto en lo que se refiere al medio físico como a la forma en la que se transmite la información.
Sus principales funciones se pueden resumir como:
  • Definir el medio o medios físicos por los que va a viajar la comunicación: cable de pares trenzados (o no, como en RS232/EIA232), coaxial, guías de onda, aire, fibra óptica.
  • Definir las características materiales (componentes y conectores mecánicos) y eléctricas (niveles de tensión) que se van a usar en la transmisión de los datos por los medios físicos.
  • Definir las características funcionales de la interfaz (establecimiento, mantenimiento y liberación del enlace físico).
  • Transmitir el flujo de bits a través del medio.
  • Manejar las señales eléctricas del medio de transmisión, polos en un enchufe, etc.
  • Garantizar la conexión (aunque no la fiabilidad de dicha conexión).

Capa de enlace de datos

Esta capa se ocupa del direccionamiento físico, de la topología de la red, del acceso al medio, de la deteccion de errores, de la distribución ordenada de tramas y del control del flujo.
Como objetivo o tarea principal, la capa de enlace de datos se encarga de tomar una transmisión de datos ” cruda ” y transformarla en una abstracción libre de errores de transmisión para la capa de red.  Este proceso se lleva a cabo dividiendo los datos de entrada en marcos (también llamados tramas) de datos (de unos cuantos cientos de bytes), transmite los marcos en forma secuencial, y procesa los marcos de estado que envía el nodo destino.

Capa de red

Se encarga de indentificar el enrutamiento existente entre una o más redes. Las unidades de informacion se denominan paquetes, y se pueden clasificar en protocolos enrutables y protocolos de enrutamiento.
  • Enrutables: viajan con los paquetes (IP, IPX, APPLETALK)
  • Enrutamiento: permiten seleccionar las rutas (RIP,IGRP,EIGP,USPF,BGP)
El objetivo de la capa de red es hacer que los datos lleguen desde el origen al destino, aún cuando ambos no estén conectados directamente. Los dispositivos que facilitan tal tarea se denominan enrutadores, aunque es más frecuente encontrar el nombre inglés routers y, en ocasiones enrutadores. Los routers trabajan en esta capa, aunque pueden actuar como switch de nivel 2 en determinados casos, dependiendo de la función que se le asigne. Los firewalls actúan sobre esta capa principalmente, para descartar direcciones de máquinas.
En este nivel se realiza el direccionamiento lógico y la determinación de la ruta de los datos hasta su receptor final.

Capa de transporte

Capa encargada de efectuar el transporte de los datos (que se encuentran dentro del paquete) de la máquina origen a la de destino, independizándolo del tipo de red física que se esté utilizando. La PDU de la capa 4 se llama Segmento o Datagrama, dependiendo de si corresponde a TCP o UDP. Sus protocolos son TCP y UDP; el primero orientado a conexión y el otro sin conexión. Trabajan, por lo tanto, con puertos lógicos y junto con la capa red dan forma a los conocidos como Sockets IP:Puerto (192.168.1.1:80).

Capa de sesión

Esta capa es la que se encarga de mantener y controlar el enlace establecido entre dos computadores que están transmitiendo datos de cualquier índole. Por lo tanto, el servicio provisto por esta capa es la capacidad de asegurar que, dada una sesión establecida entre dos máquinas, la misma se pueda efectuar para las operaciones definidas de principio a fin, reanudándolas en caso de interrupción. En muchos casos, los servicios de la capa de sesión son parcial o totalmente prescindibles.

Capa de presentación

El objetivo es encargarse de la representación de la información, de manera que aunque distintos equipos puedan tener diferentes representaciones internas de caracteres los datos lleguen de manera reconocible.
Esta capa es la primera en trabajar más el contenido de la comunicación que el cómo se establece la misma. En ella se tratan aspectos tales como la semántica y la sintaxis de los datos transmitidos, ya que distintas computadoras pueden tener diferentes formas de manejarlas.
Esta capa también permite cifrar los datos y comprimirlos. Por lo tanto, podría decirse que esta capa actúa como un traductor.

Capa de aplicación

Ofrece a las aplicaciones la posibilidad de acceder a los servicios de las demás capas y define los protocolos que utilizan las aplicaciones para intercambiar datos, como correo electrónico (Post Office Protocol y SMTP), gestores de bases de datos y servidor de ficheros (FTP), por UDP pueden viajar (DNS y Routing Information Protocol). Hay tantos protocolos como aplicaciones distintas y puesto que continuamente se desarrollan nuevas aplicaciones el número de protocolos crece sin parar.
Cabe aclarar que el usuario normalmente no interactúa directamente con el nivel de aplicación. Suele interactuar con programas que a su vez interactúan con el nivel de aplicación pero ocultando la complejidad subyacente.




CUESTIONARIO

1.- ¿Que es el modelo OSI?
R: es el modelo de red descriptivo
2.- ¿ Para que fue creado?
R: Para la estandarización
3.- ¿ En que año surgió el desarrollo de redes con desorden?
R: 1980
4.- ¿ Que hizo la organización internacional para enfrentar  el problema de imcompstibilidad?
R:
5.- ¿ Que especifica el modelo de los protocolos ?
R:  especifica el protocolo que debe ser usado en cada capa

6.- ¿ Para que se usan los modelos de los protocolos ?
R: para la enseñanza de comunicación de redes
7.-¿ Que es la capa física?
R: encargada
8.- ¿ De que se en carga la capa de enlace de datos ?
R:  Del direccionamiento físico de la topología de red
9.- ¿ Cual  es el Objetivo de la capa de red?
R: que los datos lleguen desde su origen al destino


No hay comentarios:

Publicar un comentario en la entrada